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ASYMPTOTIC DISTRIBUTION OF THE SHAPIRO-WILK W FOR TESTING FOR NORMALITY

By

J. R. Leslie, M. A. Stephens and S. Fotopoulos

1. Introduction.

A nopular test for the normality of a random sample is based on the
Shapiro-Wilk statistic W, This statistic, which was presented in Shapiro
and Wilk (1965), is the ratio of the square of the BLUE of o to the
sample variance, where 02 is the variance of the normal population from

which the sample is assumed, under the null hypothesis, to have been

1/2

drawn. For convenience we shall work with W which has the form

-1, Ty2 _ay-l,-1 11/2
r_n_/m,(Xi X) E'VO VO m} ,

=13

where X = (X.,...,X )", X, <X, < ... <X, is the vector of order
= 1 n 1 2 n

statistics from the sample, X is the sample mean, and m is the mean
vector and VO the covariance matrix of standard normal order statistics.

As wl/2

is location and scale invariant we can assume from henceforth
that Xl""’xn’ are order statistics for a sample from a N(0,1)
population.

A number of authors (for example, Sarkadi (1975), (1977) and Gregory
(1977)) have (correctly) guessed at the form of the asymptotic distribution
for W as well as predicting that the test should be consistent. However
no rigorous proofs have been possible due to the presence of Va .

Neither VO nor Val can be found explicitly and until recentlv no




reasonably accurate asymptotic approximation for V0 was available. A
paper by one of the authors (Leslie 1984) has now remedied the situation;
in that paper can be found an approximation for VO together with a number

of asymptotic properties of V one of which is of particular importance

-1
0

C!
to this work. It states that m is approximately an eigenvector of V

in the following sense:

(1) JVgtn - 2mi ¢ CClogm) M2,

where C 1is a constant independent of n, and ﬁ’gﬂ’z = Ebi for

.,bn)'. This latter result formalises a similar one appearing
in Stephens (1975).

The asymptotic distribution of W, after appropriate normalizing,
has been assumed to be the same as that of the De Wet and Venter (1972)

statistic

*
W= rz(ﬁ,ﬂ) ;

here r(X,Y) 1is the sample correlation coefficient between X and Y,

1

H is the nx1 vector whose i™ element is ¢ M{i/(n+l)} and ¢
is the inverse function for the standard normal distirbution function

6(-), that is ¢ T(¢(x)) = x.

The rationale behind this assumption was that firstly, V0 m  was

known to behave like 2m (see Stephens (1975)), secondly, ¢-l{i/(n+l)}

approximates the ith element of m and thirdly, as V0 is a doubly

stochastic matrix (the sum along any row or column is 1) we may write




) v = e

De Wet and Venter (1972) showed that the asymptotic distribution of

*
W has the form

D

1/2
) - a — ¢

(2) 20 (1-W

where 7 = ZZ (Yi—l)/i, {Yi,i; 1} 1is a sequence of i.i.d. N(0,1)

variates,

ot

n
(3) a = (n+1)'l ) j(l-j)(o{Q_l(j)})—z -
i=1

j=1i/(n+l) and ¢(+) 1is the N(0,1) density function.

Beyond the De Wet and Venter result the first step towards the
asymptotic distribution for W was to show that the Shapiro-Francia

+

(1972) statistic W'  given by

£

W = rz(z;_nl)s

behaves in the same way as W*. This was done independently and via
different routes by Verrill and Johnson (1983) and by the authors in
Fotopoulos, Leslie, and Stephens (1984), henceforthh called FLS, where
expression (2) was established with WJr in place of w*. In fact we
show in FLS the equivalent result that

*1/2_ *1/2

(4) n(W )= 0 in probability.




Our task in the present paper is to show that

G212

(5 n( ) > 0 in probability .

We note that Verrill and Johnson (1983) contains a result (Theorem 3)

which should eventually cover the asymptotic distribution of W. However

certain properties of VO

m need to be established before it can be

applied. Inequality (1) does not appear to be enough.

2. Asymptotic Properties of W and a.

The following theorem presents one version of the asymptotic distri-

w1/2

bution for W - in fact the asymptotic distribution for - whilst

the corollary offers the complementary form in terms of W.

Theorem. Under the hypothesis that the observed sample is from a normal
population the asymptotic distribution of the Shapiro-Wilk W takes the

form:

1/2, D

/ ) -t

2n(1-w1'2) - 2En(1-w

where 7 = E; (Yi—l)/i, and {Yi, i?2 3} 1is a sequence of i.i.d.

N(0,1) wvariables.

/

From the lemma below and from the theorem we have /h(l-wl 2) -0

in probability, which leads to

/ 1/2..2

20(1-W7%) - a@a-w) = (/n(1-w'%))% 5 0 in probability.

Again applying the lemma below we obtain,




Corollary. An equivalent form for the asymptotic distribution of W is:
D
n(W-EW) — -~z .
It is not obvious from their definition just how the constants a_ will

behave as n gets large. The following lemma should shed some light on

this matter.

Lemma. The constants a, defined in (3) have the following properties:

(i) an-ZnE{l—r(E,g)} + 0, where b can be any of m,
-1
l/2VO m or H,

(i1) an-nE(1~W) - 0,

(iii) fan—n(l-n_lx_n_'g) +3/2] < c(logm)t,
and
(iv) Clloglog(n) < a < Czloglog(n), 0<C1 <Cy<= .

Note that (iii) implies that

13

'm=mn-a - 3/2+0()

As far as we are aware this property of m'm has not appeared elsewhere;
the behavior of m'm is of interest in other contexts and has been the
subject of a number of papers (see for example, Balakrishnan (1984), Ruben

(1956) and Saw and Chow (1966)).




e it

It should be pointed out that the covergence for (i) and (ii) in the
lemma is extremely slow; for example an-ZEn(l-r(ﬁ,g)) : =0.1 for 40 <n
< 400. It is therefore unclear as to which set of norming constants it is
best to use.

When Sarkadi (1975) established the consistency of the Shapiro-Francia
test, it seemed likely that the Shapiro-Wilk test would share that property.
That it is indeed consistent will follow from a straightforward application

of a result in Sarkadi (1981).

3. Proofs.

Notation. We give some notation which will be used throughout the rest

of the paper. With or without subscripts, € 1is a generic constant which

is independent of i and n. Set g = l/ZVBIE, nGi =g'g, nMi =m'm,
N 1is the integer part of 1/2(n+l), Si = E; (Xi—f)z/n,

, -1 i -1 .
v(v) = ¢ “{exp(-v)}, sy = Zn M w(si), W, = —1og(¢(Xi))—si. Note

. .t NP
Wi+si is the i h largest order statistic in a random sample from an

exponential distribution; EW, = 0, EW? =d, , where d, = Z? v_2,
i i in in i
Ewi = 22? v-3 and }Ewii < Ci-2 for r > 3. Denote the ith element

of g, m and H by respectively 8, M and Hi (m and H are given
in section 1). Further, as r 1is scale and location invariant we assume

without loss of generality that our sample is from a N(0,1) population.

Proof of Consistency. The consistency of W follows directly from

Theorem 1 of Sarkadi (1981). There is a small difficulty in that whilst

. 1 ,
it appears to be the case that VO m is a vector whose elements, as you

move down the vector, are monotonic increasing, we are unbale to prove it.
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This means we cannot establish that wl/z

+1/2

is always positive., Sarkadi

exploits the fact that W
1/2

is always positive to argue that tests based

+
are equivalent to those based on W . We need to argue likewise

1/2’ wil/2

+
on W

for W (note: we distinguish between W

(wl/z)z

etc. and the square roots

+ Py s . . .
of W, W etc.; it is true that W = but in view of what has just

W12

been said, we are unable to say whether is the positige square root

of W). We overcome this difficulty by showing below that

(6) wl/z > -C(logn)-l/2 , C independent of n.

From the theorem and the lemma, the 100a7% critical region for the test

1/2 is: wif?

based on W < l—l/2(c(a)+an)n—l. For the test based on W

it is W < l-(c(a)+an)n-l. By (6) the two critical regions are asymptoti-

1/2

cally equivalent. We need only show therefore that W is consistent.

We extablish (6) by setting l? to be an nx1 vector of 1's and writing

w1/2

= {(X-X1)'(g-m) + X'm}/(nS G )

= " - =~ nn
As X'm > 0 provided only that the components of X are increasing (see
Sarkadi (1975), Lemma 2), and from (1), max]gi-mi] < C//(logn), we have,
with the help of (21) below,

w1/2

nv

—CZZ‘XiXW/{nSnGnJ(logn)} > -C/¥(logn)

We turn now to Theorem 1 of Sarkadi (1981). Applied to our context, it
1/2

states that W will determine a consistent test of HO: that the random




}
|
i
[
[ sample is normal, versus Hl: that the observations are not normal (Sarkadi

also allows the observations under Hl to be m-dependent with common

non-normal marginal) providing

(7) ¥ giG;l f T(i-1 < nu < 1)6 T(u)du = 1 + 0(1)

1

where TI(A) is the indicator function for A. Note that Sarkadi's

theorem is framed in terms of a statistic Tn which here takes the form

T =

_1/25-1-(: 12 - 1/2
n n

{(Xi-X)n in’

13

where cin/n = gi/Gn. To establish (7) we require results contained in
the proof of both our lemma and theorem, therefore we will leave the

derivation of (7) till the end of the article.

Proof of Lemma. We start by showing (iii); observe that

N

2
-— = ) 7 1 - N— '
n(l Mn) Zgi \ar(Xi), (2N n)Var(XN)

We can write

2
= E{y(s,+W,) - Ey(s.+W,)}" .
Var(Xi) E{u(si Wi) Ev(s; i)}
Expanding 3 in wi up to third order terms, using the properties of
Wi given in the section on notation and together with results in Leslie
(1984) (in particular, Lemma 6 and the properties of y given in section 3)

we can show that




var(x)) - ', | £ CliCog/i)) 172,

where W'(si) = {exp(-si)}/¢(¢-l(exp(—si))) and din = Z? v-z. This yields

{w'(si)}zdin} < C(logn)_z .

| ’
(8) ) Var(Xi) -

[l e 1A
[ W 3~

Using the Euler-Maclaurin summation formula (Knopp (1951), p. 534)

(9) 0° s, - log((n+1)/1) - 1/2(i =)™V < (42 () "2y /12
and
(10)  0<d;_-i HI-(/(a+1))] - 17202 (1) %) < 1/(610)

In FLS we show that |y'(v)| and | "(v)! are monotonic decreasing in v;

also in Lemmas 1 and 4 in Leslie (1984) it is shown that

[ e . ( T s \—1/2

(11) "' {log((n+1)/i)} < Cllog(n/i)}
and
(12) | "ilog ((n+1)/1)}' < Cllog(n/i)} 32 .
With (9), (10) and (11) we have

b ey 2 -1 . 1 =2 ,
(13) e (si)} (dn—l {1-(i/(n+1)) 1), < Ci “/log(n/i)

_-11]
9




rlIlllIIlIlI!lIIlIlllIlI!IIIll---ll----!-l-.-..-.--'-"---r“

(14) [ s = G o () /DD < clu' )" /i

where log{(a+l)/i} < oy < 8-

Expressions (11)~(14) taken together imply that

c

' 2
1 (si)} din-(n+1

2

N
y 1l W
1

< C(logn)-l .

From the definition of a
Next we establish (iv).
Renvi (1970) p. 164; for

X

(16) ¢ (x) (1-x"
for

From this we obtain,

(17)

ftA

In view of the symmetry in the summands in

1

<

i <N,

[-;—N] <i < N we use

We use (17), over the range

N
)72 T e/ (1)) ) 211 e Y |
1

and with (8) and (15) we obtain (iii).
A well known inequality is useful here (see

<0

2y/1x] < o(x) < 600/ |x) .

i and with x = Hi’

A

N,

iiHi!/{(n+l)¢(Hi)}

A

a_, we need consider only

1<12 I[N and for

WA

.
(18) C, < o(H) (1/ (1)) (1-(i/ (a¥1))) < C,
L
where Cl’ C2 do not depend on i or n. Based on (16) we show in Lemma 3
10
L




of FLS that for any cO(O <¢g <1) there is a Y(co) such that when

1

0<u<yley) <3,

1/2 1/2

(19) ~f<log(2mu®) 12 < 671wy < -{-colog(Zﬂuz)}

This yields for 1 < i < N,
(20) ¢,{10g (/2 < Ju ] < c, {1og(m/1)}? .
Applying (17), (18) and (20) we find

C

5 6

1 1
[%fl [EN]
1 8

filog(n/1)1 Y + ¢, < a +3/2 < ¢ ) {ilog(n/i)} L +c
1

which, after approximating the sum by an integral, establishes (iv).
To complete the lemma we prove (i) and (ii). First however, we need

two results which will be used here and in the proof of the theorem:
(21) G -1 as n>«, and

/ ' -1 2
(22) O s /himl//g/l -m'g <MG "/ g—m// ™ .

It is well known that Mn + 1 as n >« (see Hoeffding (1953)). On

writing Gi = Mi + 2m' (g_—g)n-l + // g-m// 2n—l, from (1) and Schwarz

inequality we obtain (21). We demonstrate (22) by exploiting an idea

0 0

being a covariance matrix, is positive definite. Set 6 to be the angle

in Sarkadi (1972). First note that m'g > 0, for m'g=m'V."m and V




between m and g then cosé >0 and 0 < & < %ﬂ. Consider the

triangle formed by vectors m, g and a = m~g, respectively lines AB,

AC and CB, Let CD be the perpendicular from C to AB. Then

nah? s «m? = /gl *sine = /f g/t *(+coss) (1-coss) > /f g/l 2(1-cose) 3 O.
As cos® =mw'g{/m/f [/ g/}, (22) follows.

Returning to the proof of (i) and (ii) of the lemma we show first

that

(23) mE(1-(£,b)) - n(1-M ) + 3/4] < C(logm) ™" .

As r 1is scale invariant and as Si is sufficient for the scale para-
meter O we can use Theorem 7, p. 243 of Hogg and Craig (1970) to yield

nE £(X,b) = m'b/{ES_// b/ n /%)

With nSi distributed as x2 on n-1 degrees of freedom it is elementary

to show that

/

ES_ = 2/m) 2 (m/2) /7 ((n-1)/2)

By Stirling's formula this reduces to 1—(3/4)n-l + O(n-z). As
n—l/zﬂ_hﬂ + 1 (the case b =H is shown in Lemma 2 of De Wet and

Venter (1972)), and using (1), (22) and an analogue of (22) with g and

G, replaced by H and Hn = /{(Efg)/n} (this analogue holds because

miHi >0 for all i, m, and Hi always having the same sign) we have,

12




Y2Zowpvr 7l + 0w™h

En{l-r(X,b)} = n(ES )7 {1-(3/4)n " - n

i

n(Esn)'l(l-Mn) - (3/4) + 0(logm)™!

it

n(1-M_) - (3/4) + 0(logn) ™",
the latter expression resulting from the fact that n(l—Mn) = 0(loglogn)
(using (iii) and (iv) of the lemma and recall that Mn -+ 1). This
establishes (23). Analogous to (23) for b =g we have

2 N 2 -1
(24) [nE{2-r“(X,g)} - n(1-M7) + 3/2] < C(logn) = .

. 2 .
To show this we note that as nESn = n-1 we can write

nErl(x,g) = EQ'e)Y/ ((a-1)62)

with

E(X'g)” 8'Voeg + E'm’ = %m'& + (g'm?

1 2
annGn + (n GnMn) + 0(n/logn)

using (1) and (22). Again using the property that n(l—Mn)==O(loglogn),

we obtain (24)., As
2 2 2
(25) 2n(l-Mn) - n(l—Mn) = {/h(l-Mn)} = 0{(loglogn) " /n}

it is clear from (23), (24) and (iii) of the lemma that (i) and (ii) hold.

13




L

h Undoubtedly it is true that an—En{l-rz(gxg)} +~0, for b=m
and H. However this entails showing that ﬁ'Vog—Zgﬂ + 0 and

”’VOE'@E” +> 0 both of which will follow once V. is replaced by the

0
approximation V given in Leslie (1984): corollary 1 in Leslie (1984)

permitting this. These two results will involve a quantity of tedious

analysis and it seems unnecessary to set it down here.

Proof of Theorem. The theorem follows from (2), (4) and (5) together

with the lemma; therefore to prove the theorem it remains to establish

(5). Now

1

1/2 *1/2, _ ¢ -1 -
W) = % X, (gy6, —mM,)

nSn(W
= T &) (ymm )G+ X pmmm (6NN + @g - wdl gl G

As Sn +1 a.s. and with (21) and (22), expression (5) will follow from

Markov's inequality once we demonstrate that

(26) E{E(Xi—mi)(gi-mi)l +0, and

- -1 -1
(27) E]L(Xi-mi)(Gn -M_ Y| 0.

Result (26) follows from Schwarz inequality:

1/2

Elz(x;-m) (g0 5 (n(MD Y2 jgenry

With (1) and with (iii) and (iv) of the lemma we have (26).

14

| _




To deal with (27) we note that in Lemma 11 of FLS we show

(28) E|xi-wi| < ¢/v{ilog(n/i)}
“ and in Theorem 1 in FLS we show that
(29) [wi-mii < Ci.-l{log(n/i)}_a’/2 :

both of these bounds hold provided 1 < i < N. As Liim/f =1 gl < Nw-gll

(30) 622 < imegl 10 G_vo) 5 Clnlogn) Y2
and

N
(31) E(Z(xi-mi)mil <2 % (Elxi-wil1mi|+1¢i-mi!1mil)

From (29), (9), (20) and the monotonicity (decreasing) of lw(v)]

(32) lmil < C{log(n/i)}l/z, 11N,

so by combining results (28) to (32) we find

s oy - -1 -1 -1/2
Elt(X;-mm, {c_"-M "}| < C(logn) .

This establishes (27) and hence the Theorem.

15




hl Derivation of Expression (7). Denote the integral in (7) by J(i,n) then

—s067l(1/m)}, for i=1,

J(i,n0) = ¢6"Y((i-1)/m)nL +-%n-2(¢{¢-1((i-6)/n)})-1, 0<g<1, 1<i<n

¢{¢'1(1-n'1)} , for i=n.

Without loss of generality, assume n is even. Then

1
n 70
D g dG,m/6 =2t T g (7 {(-D/n}+3a7t (ole T (i-0) /m 1Y
1 i=2

+ 2gn¢{¢-1(l/n)} X

By (16), for 1 < i <5m,

N+~

1

(i-1)¢"H(i-1)/n}/n, 251 gkn, k<3

1071 (@=8) /D) > ¢fo7H (-1 /n) >

\

C(k), kn<igzm.

Thus by Schwarz inequality,

1 1
2" =] kn=-1 2"
n2 ] g /et G-/ s n e (] T a/mI TP 4 T e
2 1 kn+l
-1/2

which in turn is bounded by C{nlog(n)} , in view of (19). Further, by
(16) and (19), (> 1(1/n)) ~ 0((logn)/n), by (1), g vm_ and with (32)

and finally (22) we can argue that

16




1
_lzn -1 . | -1
2n " ) 8% {E-1)/n} v ; g% {i/(a+)} v n "m'g ~ MnGn .
2

These ensure that (7) holds.
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